资源类型

期刊论文 214

会议视频 2

会议信息 1

年份

2024 1

2023 8

2022 16

2021 21

2020 5

2019 20

2018 18

2017 12

2016 15

2015 7

2014 6

2013 10

2012 19

2011 9

2010 10

2009 12

2008 7

2007 12

2005 1

2004 1

展开 ︾

关键词

医院中子照射器I型堆 6

核能 4

压水堆 3

MCNP 2

先进反应堆 2

医院中子照射器 2

发电 2

微反应器 2

技术路线 2

燃耗 2

高温气冷堆 2

(美国) 核管理委员会 1

ACE格式 1

CECE-GC 1

CITATION 1

COVID-19 1

CPR1000 1

CPU-GPU异构;多核;共享内存;访存调度 1

ENDF/B VII.0评价库 1

展开 ︾

检索范围:

排序: 展示方式:

Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment

Xuguang TANG, Shuying WANG, Yongzhen PENG

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 475-481 doi: 10.1007/s11783-010-0244-8

摘要: The characteristic of phosphorus removal and appropriate change of the traditional operation modes were investigated in UniFed sequencing batch reactor (SBR) laboratory-scale apparatus (40 L), treating actual domestic wastewater with low ratios of C/N (2.57) and C/P (30.18), providing theoretical basis for actual application of wastewater treatment plant. UniFed SBR system with its unique operation mode had the distinct superiority of phosphorus removal. On this occasion, the effect of volumetric exchange ratio (VER) and the method of influent introduction for phosphorus removal were studied. When the carbon source became the limiting factor to phosphorus release, the higher the VER, the lower the phosphorus concentration in the effluent. Three different influent patterns, including one-time filling, four-time filling, and continuous filling with the same quantity of wastewater could increase the release rate of anaerobic phosphorus from 0.082 to 0.143 mg·P·(L·min) . Appropriate change of the traditional operation modes could optimize the efficiency of phosphorus removal. When the feed/ decant time was extended from 2 h to 4 h, the phosphorous removal efficiency increased from 59.93% to 88.45% without any external carbon source. In the mode of alternation of anoxic-aerobic (A/O) condition, phosphorous removal efficiency increased from 55.07% to 72.27% clearly. The carbon source in the influent can be used adequately, and denitrifying phosphorus removal was carried out in anoxic stage 2 (A2). This mode was optimal for the treatment of actual domestic wastewater with low C/N and C/P ratios.

关键词: UniFed sequencing batch reactor (SBR)     phosphorus removal     volumetric exchange ratio (VER)     alternation of anoxic-aerobic (A/O)     domestic wastewater    

Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) anda traditional SBR treating digested piggery wastewater

Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki

《环境科学与工程前沿(英文)》 2017年 第11卷 第3期 doi: 10.1007/s11783-017-0929-3

摘要: A traditional sequencing batch reactor (SBR) and two intermittently aerated sequencing batch reactors (IASBRs) were parallelly operated for treating digested piggery wastewater. Their microbial communities were analyzed, and the nitrogen removal performance was compared during the long–term run. IASBRs demonstrated higher removal rates of total nitrogen (TN) and ammonium nitrogen (NH -N) than the SBR, and also demonstrated higher resistance against TN shock load. It was found that the more switch times between aerobic/anoxic in an IASBR, the higher the removal rates of TN and NH –N. All the reactors were predominated by , and , which were considered to be species of denitrifiers, ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), respectively. However, the abundance and diversity was of great difference. Compared with SBR, IASBRs achieved higher abundance of denitrification–related bacteria. IASBR 1 with four aerobic/anoxic switch times was detected with 25.63% of , higher than that in IASBR 2 with two aerobic/anoxic switch times (11.57% of ), and much higher than that in the SBR (only 6.19% of ). IASBR 2 had the highest percentage of AOB, while IASBR 1 had the lowest percentage. The denitrifiers abundance was significantly positive correlated with the TN removal rate. However, the NH –N removal rate showed no significant correlation with the AOB abundance, but might relate to the AOB activity which was influenced by the average free ammonium (FA) concentration. was the only NOB genus detectable in all reactors, and were less than 0.03%.

关键词: Digested piggery wastewater     Intermittent aeration     Microbial community     Partial nitrification–denitrification process     Sequencing batch reactor (SBR)    

On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencingbatch reactor (SBR)

LI Jun, NI Yongjiong, WEI Su, CHENG Guobiao, OU Changjin, PENG Yongzhen, GU Guowei, LU Jingen

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 99-102 doi: 10.1007/s11783-008-0017-9

摘要: The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor (SBR). The SBR for municipal wastewater treatment was operated in sequences: filling, anaerobic, oxic, anoxic, oxic, settling and discharge. The reactor was equipped with on-line monitoring sensors for dissolved oxygen (DO), oxidation-reduction potential (ORP) and pH. The variation of DO, ORP and pH is relevant to each phase of biological process for nitrogen and phosphorus removal in this SBR. The characteristic points of DO, ORP and pH can be used to judge and control the stages of process that include: phosphate release by the turning points of ORP and pH; nitrification by the ammonia valley of pH and ammonia elbows of DO and ORP; denitrification by the nitrate knee of ORP and nitrate apex of pH; phosphate uptake by the turning point of pH; and residual organic carbon oxidation by the carbon elbows of DO and ORP. The controlling system can operate automatically for nitrogen and phosphorus efficiently removal.

关键词: DO     relevant     biological process     nitrogen     pH    

Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control

YANG Qing, PENG Yongzhen, YANG Anming, LI Jianfeng, GUO Jianhua

《环境科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 488-492 doi: 10.1007/s11783-007-0078-1

摘要: The feasibility of pH and oxidation reduction potential (ORP) as on-line control parameters to advance nitrogen removal in pulsed sequencing batch reactors (SBR) was evaluated. The pulsed SBR, a novel operational mode of SBR, was

关键词: reduction potential     oxidation reduction     operational     feasibility     nitrogen    

Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor

YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 23-27 doi: 10.1007/s11783-007-0004-6

摘要: In order to achieve simultaneous nitrogen and phosphorus removal in the biological treatment process, denitrifying phosphorus accumulation (DNPA) and its affecting factors were studied in a sequencing batch reactor (SBR) with synthetic wastewater. The results showed that when acetate was used as the sole carbon resource in the influent, the sludge acclimatized under anaerobic/aerobic operation had good phosphorus removal ability. Denitrifying phosphorus accumulation was observed soon when fed with nitrate instead of aeration following the anaerobic stage, which is a vital premise to DNPA. If DNPA sludge is fed with nitrate prior to the anaerobic stage, the DNPA would weaken or even disappear. At the high concentration of nitrate fed in the anoxic stage, the longer anoxic time needed, the better the DNPA was. Induced DNPA did not disappear even though an aerobic stage followed the anoxic stage, but the shorter the aerobic stage lasted, the higher the proportions of phosphorus removal via DNPA to total removal.

关键词: SBR     synthetic wastewater     Induced DNPA     resource     removal ability    

Effects of La, Ce on nitrogen removal in sequencing batch reactor

Qing XIA , Rui LIANG , Yuning HONG , Lili DING , Hongqiang REN , Yuxiang MAO , Mingyu ZHAO ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 369-374 doi: 10.1007/s11783-009-0036-1

摘要: Batch experiments were conducted to study the short-term biological effects of rare earth ions (La, Ce) and their mixture on the nitrogen removal in a sequencing batch reactor (SBR). The data showed that higher NH―N removal rate, total inorganic nitrogen removal efficiency, and denitrification efficiency were achieved at lower concentrations of rare earth elements (REEs) (<1mg/L). In the first hour of the aeration stage of SBR, the presence of REEs increased the total inorganic nitrogen removal efficiency and NH―N removal efficiency by 15.7% and 10%―15%, respectively. When the concentrations of REEs were higher than 1mg/L, the total inorganic nitrogen removal efficiency decreased, and nitrate was found to accumulate in the effluent. When the concentrations of REEs was up to 50.0mg/L, the total inorganic nitrogen removal efficiency was less than 30% of the control efficiency with a high level of nitrate. Lower concentrations of REEs were found to accelerate the nitrogen conversion and removal in SBR.

关键词: rare earth     La3+     Ce3+     inorganic nitrogen     nitrogen removal     sequencing batch reactor    

Process evaluation of an alternating aerobic-anoxic process applied in a sequencing batch reactor for

ZENG Wei, PENG Yongzhen, WANG Shuying

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 28-32 doi: 10.1007/s11783-007-0005-5

摘要: In order to improve the nitrogen removal efficiency and save operational cost, the feasibility of the alternating aerobic-anoxic process (AAA process) applied in a sequencing batch reactor (SBR) system for nitrogen removal was investigated. Under sufficient influent alkalinity, the AAA process did not have an advantage over one aerobicanoxic (OAA) cycle on treatment efficiency because microorganisms had an adaptive stage at the alternating aerobic-anoxic transition, which would prolong the total cycling time. On the contrary, the AAA process made the system control more complicated. Under deficient influent alkalinity, when compared to OAA, the AAA process improved treatment efficiency and effluent quality with NH-N in the effluent below the detection limit. In the nitrification, the average stoichiometric ratio between alkalinity consumption and ammonia oxidation is calculated to be 7.07 mg CaCO/mg NH-N. In the denitrification, the average stoichiometric ratio between alkalinity production and NO-N reduction is about 3.57 mg CaCO/mg NO-N. As a result, half of the alkalinity previously consumed during the aerobic nitrification was recovered during the subsequent anoxic denitrification period. That was why the higher treatment efficiency in the AAA process was achieved without the supplement of bicarbonate alkalinity. If the lack of alkalinity in the influent was less than 1/3 of that needed, there is no need for external alkalinity addition and treatment efficiency was the same as that under sufficient influent alkalinity. Even if the lack of alkalinity in the influent was more than 1/3 of that needed, the AAA process was an optimal strategy because it reduced the external alkalinity addition and saved on operational cost.

关键词: bicarbonate alkalinity     sufficient influent     influent alkalinity     detection     alkalinity production    

N2O emission from a sequencing batch reactor for biological N and P removal from wastewater

Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 776-783 doi: 10.1007/s11783-013-0586-0

摘要: Nitrous oxide (N O) is a greenhouse gas that can be released during biological nitrogen removal from wastewater. N O emission from a sequencing batch reactor (SBR) for biological nitrogen and phosphorus removal from wastewater was investigated, and the aims were to examine which process, nitrification or denitrification, would contribute more to N O emission and to study the effects of heterotrophic activities on N O emission during nitrification. The results showed that N O emission was mainly attributed to nitrification rather than to denitrification. N O emission during denitrification mainly occurred with stored organic carbon as the electron donor. During nitrification, N O emission was increased with increasing initial ammonium or nitrite concentrations. The ratio of N O emission to the removed ammonium nitrogen (N O-N/NH -N) was 2.5% in the SBR system with high heterotrophic activities, while this ratio was in the range from 0.14% to 1.06% in batch nitrification experiments with limited heterotrophic activities.

关键词: biological nutrient removal     denitrification     greenhouse gas     nitrification     nitrous oxide    

Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilmbatch reactor-constructed wetland system

Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1097-4

摘要:

SBBR-CW system was proposed to effectively treat wastewater containing TCBPA.

CW unit contributed more than SBBR to the removal of TCBPA.

TCBPA changed the composition and structure of bacterial community in the system.

GAOs massively grew in SBBR, but did not deteriorate TP removal efficiency.

关键词: SBBR     Constructed wetland     Tetrachlorobisphenol A     Microbial community structure    

Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms

Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia

《环境科学与工程前沿(英文)》 2018年 第12卷 第5期 doi: 10.1007/s11783-018-1077-0

摘要:

Microbial metabolism uncoupling, sludge decay is the main mechanism to promote in situ sludge reduction on this biofilm system.

The main reduction mechanism inside the biofilm is sludge decay in the longitudinal distribution of biofilm.

Mizugakiibacter and Azospira anaerobic fermentation bacterium dominate the FSC organisms indicating the dominant mechanism on the biofilm is sludge decay.

The floating spherical carriers with compound of the polyurethane and two fiber balls can effectively blocking suspended sludge, improving Biofilm formation efficiency significantly.

关键词: In situ sludge reduction     Biofilm     Composite floating spherical carriers     Microbial community     SBBR    

A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor

Chen Qian, Wei Chen, Wei-Hua Li, Han-Qing Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0962-2

摘要: Rapid monitoring of water quality is crucial to the operation of municipal wastewater treatment plants (WWTPs). Fluorescence excitation-emission matrix (EEM) in combination with parallel factor analysis (PARAFAC) has been used as a powerful tool for the characterization of dissolved organic matter (DOM) in WWTPs. However, a recent work has revealed the drawback of PARAFAC analysis, i.e., overestimating the component number. A novel method, parallel factor framework-clustering analysis (PFFCA), has been developed in our earlier work to resolve this drawback of PARAFAC. In the present work, both PARAFAC and PFFCA were used to analyze the EEMs of water samples from a full-scale WWTP from a practical application point of view. The component number and goodness-of-fit from these two methods were compared and the relationship between the relative score change of component and the actual concentration was investigated to evaluate the estimation error introduced by both methods. PFFCA score and actual concentration exhibited a higher correlation coefficient ( = 0.870) compared with PARAFAC ( <0.771), indicating that PFFCA provided a more accurate relative change estimation than PARAFAC. The results suggest that use of PARAFAC may cause confusion in selecting the component number, while EEM-PFFCA is a more reliable alternative approach for monitoring water quality in WWTPs.

关键词: Wastewater treatment plants (WWTPs)     Excitation-emission matrix (EEM)     Parallel factor (PARAFAC)     Parallel factor framework-clustering analysis (PFFCA)    

Effects of shear force on formation and properties of anoxic granular sludge in SBR

Xinyan ZHANG, Binbin WANG, Qingqing HAN, Hongmei ZHAO, Dangcong PENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 896-905 doi: 10.1007/s11783-013-0539-7

摘要: This paper reports the effects of shear force on anoxic granular sludge in sequencing batch reactors (SBR). The study was carried out in two SBRs (SBR1 and SBR2) in which sodium acetate (200 mg COD·L ) was used as the sole substrate and sodium nitrate (40 mgNO -N·L ) was employed as the electron acceptor. The preliminary objective of this study was to cultivate anoxic granules in the SBR in order to investigate the effects of shear force on the formation of anoxic granular sludge and to compare the properties of anoxic sludge in the SBR. This study reports new results for the values of average velocity gradient, a measure of the applied shear force, which was varied in the two SBRs (3.79 s and 9.76 s for SBR1 and SBR2 respectively). The important findings of this research highlight the dual effects of shear force on anoxic granules. A low shear force can produce large anoxic granules with high activity and poor settling ability, whereas higher shear forces produce smaller granules with better settling ability and lower activity. The results of this study show that the anoxic granulation is closely related to the strength of the shear force. For high shear force, this research demonstrated that: 1) granules with smaller diameters, high density and good settling ability were formed in the reactor, and 2) granular sludge formed faster than it did in the low shear force reactor (41days versus 76 days). Once a steady-state has been achieved, the nitrate and COD removal rates were found to be 98% and 80%, respectively. For low shear force, such as was applied in SBR1, this research demonstrated that: 1) the activity of anoxic granular sludge in low shear force was higher than that in high shear force, 2) higher amount of soluble microbial products (SMPs) were produced, and 3) large pores were observed inside the larger granules, which are beneficial for nitrogen gas diffusion. Electron microscopic examination of the anoxic granules in both reactors showed that the morphology of the granules was ellipsoidal with a clear outline. Coccus and rod-shaped bacteria were wrapped by filamentous bacteria on the surface of granule.

关键词: denitrification     anoxic granular sludge     sequencing batch reactors (SBR)     shear force    

The combined effects of biomass and temperature on maximum specific ammonia oxidation rate in domestic wastewater treatment

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1411-9

摘要:

• Actual SAORs was determined using MLVSS and temperature.

关键词: Specific ammonia oxidation rate     Sequencing batch reactor     Biomass     Temperature coefficient     Model simulation    

基于可控参数的前馈神经网络出水总氮预测模型研究 Article

赵子豪, 王子昊, 袁家洛, 马骏, 何哲灵, 徐一兰, 沈晓佳, 朱亮

《工程(英文)》 2021年 第7卷 第2期   页码 195-202 doi: 10.1016/j.eng.2020.07.027

摘要: 本文基于我国城镇污水处理厂主流工艺——序批式活性污泥工艺(SBR),构建了一种基于可控参数的前馈神经网络(FFNN)出水总氮预测模型。

关键词: 前馈神经网络(FFNN)     算法     可控参数     序批式活性污泥工艺     总氮    

Structure and formation of anoxic granular sludge —A string-bag hypothesis

Binbin WANG,Dangcong PENG,Xinyan ZHANG,Xiaochang WANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 311-318 doi: 10.1007/s11783-014-0748-8

摘要: Anoxic granular sludge was developed in a laboratory-scale sequencing batch reactor which was fed with sodium acetate and sodium nitrate as electron donor and accepter. The sludge in the reactor was almost granulated after approximately 90 days of cultivation. In the present study, a detailed examination of surface morphology and internal structure of anoxic granular sludge was conducted using scanning electron microscope. It showed that the bacteria inside the granules had a uniform, coccus-like shape. By contrast, filamentous bacteria were predominant outside the granules. These bacteria were woven and had wrapped the coccus bacteria together to form granules. The small amounts of DO in the liquid bulk promoted the growth of filamentous bacteria on the surface of the granules. A string-bag hypothesis was proposed to elucidate the structure and formation of the anoxic granular sludge. It suggested that micro-aeration could be a method to promote granulation in practical anoxic treatment systems.

关键词: granulation     sequencing batch reactor     anoxic sludge     scanning electron microscope     filamentous bacteria    

标题 作者 时间 类型 操作

Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment

Xuguang TANG, Shuying WANG, Yongzhen PENG

期刊论文

Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) anda traditional SBR treating digested piggery wastewater

Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki

期刊论文

On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencingbatch reactor (SBR)

LI Jun, NI Yongjiong, WEI Su, CHENG Guobiao, OU Changjin, PENG Yongzhen, GU Guowei, LU Jingen

期刊论文

Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control

YANG Qing, PENG Yongzhen, YANG Anming, LI Jianfeng, GUO Jianhua

期刊论文

Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor

YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying

期刊论文

Effects of La, Ce on nitrogen removal in sequencing batch reactor

Qing XIA , Rui LIANG , Yuning HONG , Lili DING , Hongqiang REN , Yuxiang MAO , Mingyu ZHAO ,

期刊论文

Process evaluation of an alternating aerobic-anoxic process applied in a sequencing batch reactor for

ZENG Wei, PENG Yongzhen, WANG Shuying

期刊论文

N2O emission from a sequencing batch reactor for biological N and P removal from wastewater

Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN

期刊论文

Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilmbatch reactor-constructed wetland system

Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu

期刊论文

Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms

Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia

期刊论文

A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor

Chen Qian, Wei Chen, Wei-Hua Li, Han-Qing Yu

期刊论文

Effects of shear force on formation and properties of anoxic granular sludge in SBR

Xinyan ZHANG, Binbin WANG, Qingqing HAN, Hongmei ZHAO, Dangcong PENG

期刊论文

The combined effects of biomass and temperature on maximum specific ammonia oxidation rate in domestic wastewater treatment

期刊论文

基于可控参数的前馈神经网络出水总氮预测模型研究

赵子豪, 王子昊, 袁家洛, 马骏, 何哲灵, 徐一兰, 沈晓佳, 朱亮

期刊论文

Structure and formation of anoxic granular sludge —A string-bag hypothesis

Binbin WANG,Dangcong PENG,Xinyan ZHANG,Xiaochang WANG

期刊论文